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ABSTRACT

Motivation: Genome-wide mRNA profiling provides a snapshot
of the global state of cells under different conditions. However,
mRNA levels do not provide direct understanding of upstream
regulatory mechanisms. Here, we present a new approach
called Expression2Kinases (X2K) to identify upstream regulators
likely responsible for observed patterns in genome-wide gene
expression. By integrating chromatin immuno-precipitation (ChIP)-
seq/chip and position weight matrices (PWMs) data, protein–protein
interactions and kinase–substrate phosphorylation reactions, we can
better identify regulatory mechanisms upstream of genome-wide
differences in gene expression. We validated X2K by applying it to
recover drug targets of food and drug administration (FDA)-approved
drugs from drug perturbations followed by mRNA expression
profiling; to map the regulatory landscape of 44 stem cells and their
differentiating progeny; to profile upstream regulatory mechanisms
of 327 breast cancer tumors; and to detect pathways from profiled
hepatic stellate cells and hippocampal neurons. The X2K approach
can advance our understanding of cell signaling and unravel drugs
mechanisms of action.
Availability: The software and source code are freely available at:
http://www.maayanlab.net/X2K.
Contact: avi.maayan@mssm.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Although genome-wide proteomic approaches are rapidly
improving, the most widely available and cost-effective genome-
wide expression data is still collected at the mRNA level.
These experiments are carried out using either microarrays or
more recently RNA sequencing (RNA-seq) (Wang et al., 2009).
Commonly, studies examine cells under different experimental
conditions such as control versus drug treated, disease versus
normal states or as a time-series, for example, during cell
differentiation. Since quantitative changes in mRNA levels do
not directly explain how cell signaling mechanisms are altered to
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induce changes in gene expression, and in turn lead to changes
in cellular phenotype, identification of such upstream regulatory
mechanisms has been the focus of many computational systems
biology studies. Such understanding will enable us, among other
things, to better control cell behavior with small molecules, and in
turn translate such ability to therapeutics. Most popular approaches
for data interpretation of changes in genome-wide gene expression
include promoter analysis (Matys et al., 2006; Portales-Casamar
et al., 2010), gene ontology (The Gene Ontology Consortium)
or pathway enrichment analyses (Kanehisa et al., 2010), as well
as reverse engineering of networks from mRNA expression data
(Margolin et al., 2006). The ultimate goal of many of these
approaches is to identify and rank potential target genes/proteins
that if knocked down or overexpressed would explain the observed
changes by, for example, reversing them. Such proteins may
ultimately become drug targets. Here, we present a rational
approach called Expression2Kinases (X2K) to identify and rank
putative transcription factors, protein complexes and protein kinase
that are likely responsible for the observed changes in genome-wide
mRNA expression. By combining data from chromatin immuno-
precipitation (ChIP)-seq/chip experiments and/or position weight
matrices (PWMs), protein–protein interactions and kinase–substrate
protein phosphorylation reactions, we demonstrate how we can
better identify regulatory mechanisms responsible for genome-wide
differences in gene expression. The idea is to first infer the most
likely transcription factors that regulate the differences in gene
expression, then use protein–protein interactions to connect the
identified transcription factors using additional proteins to build
transcriptional regulatory subnetworks centered on these factors
and finally use kinase–substrate protein phosphorylation reactions
to identify and rank candidate protein kinases that most likely
regulate the formation of the identified transcriptional complexes
(Fig. 1).

We show how transcription factors, protein complexes and
protein kinase candidate identification and ranking are inferred
robustly by cross-validating the method with additional data such
as those from drug perturbations followed by genome-wide mRNA
expression profiling. Furthermore, we demonstrate the application
of the method to in several case studies, where we developed
several visualization methods that present a global view of cell-
fate trajectories at different layers of regulation. All together, X2K
can rapidly advance our understanding of cell signaling networks’
regulation of gene expression by utilizing different modalities of
prior knowledge. The X2K approach can assist in drug target
discovery and help in unraveling drug mechanisms of action.
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Fig. 1. The X2Ks workflow.

2 METHODS

2.1 Identifying differentially expressed genes
The first step of the X2K computational approach is a standard procedure
where differentially expressed genes (mRNAs) are identified. Such sets of
genes can originate from experiments that profiled cells under different
conditions, during different stages of differentiation, from tissues of different
patients or different cell-lines. The identified sets of differentially expressed
genes can then be grouped into up or down subgroups, clusters of genes
that behave similarly across different perturbations, or gene modules that
behave similarly over a time course. The outputs from such analyses produce
sets of unranked lists of genes. For microarray analysis we performed
here, MAS5.0-processed data from the gene expression omnibus (GEO)
database was used. Quantile normalization was then required for cross-assay
comparisons. Following normalization, differentially expressed genes were
identified via the R statistical package LIMMA (Smyth, 2004).

2.2 Identifying upstream transcription factors
Once sets of differentially expressed genes are identified, these gene lists
can be fed into the transcription factor inference module of X2K using the
tool and database ChIP-seq/chip Enrichment Analysis (ChEA) (Lachmann
et al., 2010) or PWMs to obtain a list of transcription factors that are
the likely upstream regulators of the identified differentially expressed
gene set. The ChEA database and software contains manually extracted
results of transcription factor/target-gene interactions from ChIP-seq/chip
experiments applied to human or mouse cells. This database currently
contains a network of 361 299 interactions, manually extracted from 157
publications, describing the binding of 159 transcription factors to their
putative targets covering almost all annotated human or mouse target genes.
On average, each transcription factor/experiment entry lists ∼1300 target
genes. Most interactions were extracted based on authors’ selection of target
genes for each factor, but in few cases, we directly processed the raw
fastq files from sources such as the National Center for Biotechnology
Information’s sequence read archive (SRA) database or processed the WIG
or BED files provided by the authors to identify the top peaks near genes,
while setting an arbitrary cut-off to obtain the top ∼1000–2000 target genes
for each experiment based on distance to the start site and peak height.
We used BowTie (Langmead et al., 2009) for reads alignment and MACS
(Zhang et al., 2008) for peak calling. With the ChEA database, we compute
enrichment for overlap between the input set of differentially expressed
genes and entries in the ChEA database using either the Fisher’s exact
test, an alternative method that computes the deviation from expected rank
for random input gene-set, or a combination of these two scoring schemes.
As an alternative to ChEA, we used TRANSFAC (Matys et al., 2006) and
JASPAR (Portales-Casamar et al., 2010), which are two state-of-art databases
for PWMs. From TRANSFAC and JASPAR, we generated a Gene Matrix
Transposed (GMT) file (Subramanian et al., 2007) listing putative target
genes for each transcription factor for human or mouse by scanning the
promoters (−2000 to +500 from the transcription factor start site) for all

annotated genes for these two organisms. The program Patch, provided by
TRANSFAC, was used to scan promoter sequences. We kept all individual
entries from both databases even though for some transcription factors there
are more than one PWM. For JASPAR we used the JASPAR Core.

The ChEA or the GMT file created from TRANSFAC and JASPAR were
used to analyze lists from mRNA expression profiling by performing gene-
list enrichment analysis with the Fisher’s exact test using the ChEA or the
PWMs dataset as the prior biological knowledge gene-list library. ChEA
and PWMs, each have their own advantages and disadvantages. ChEA is
created from empirical observations in different cell types and conditions.
On one hand, ChEA considers the chromatin state of the cell under a specific
condition, which is not done by PWMs and may produce more specific
overlapping genes with fewer false positives. However, the ChEA approach
may miss hits for transcription factors if the examined expression is derived
from completely different cell types or the transcription factor is missing
from ChEA. Another advantage of the PWM GMT library is that it provides
more coverage for factors. For example, TRANSFAC contains 830 mouse
and 1113 human matrices for about ∼300 transcription factors, whereas the
ChEA database currently only has 159 factors.

2.3 Connecting transcription factors with
protein–protein interactions

Most analyses that attempt to link gene expression changes to upstream
regulators stop at the step of promoter analysis, or attempt to infer
pathways directly from differentially expressed genes. However, X2K
further ‘connects’ the identified transcription factors using networks of
experimentally reported protein–protein interactions or protein complexes.
Genes2Networks (G2N) is command-line and web-based software that we
developed in the past to connect lists of mammalian genes/proteins in
the context of background mammalian signalome and interactome protein
networks (Berger et al., 2007). The background protein–protein interactions
network we use in X2K is made of experimentally determined mammalian
interactions collected from 18 databases/datasets and currently contains
24 036 proteins connected through 389 959 interactions. The input to the
program is a list of human Entrez gene symbols and background protein
interaction networks, while the output is a subnetwork made of ‘intermediate’
proteins that ‘connect’ the ‘seed’ list of genes/proteins. This is achieved
by finding all shortest paths between all pairs of seed nodes with a
specified maximum path length and then adding additional interactions
between intermediates. Different settings allow for filtering interactions from
background networks by limiting the number of interactions from a specific
paper, limiting the selection of background databases or only including
interactions that are reported more than once. Once transcription factor-
centered complexes upstream of differentially expressed gene modules are
identified, using the G2N module of X2K, we identify the protein kinases that
are most likely responsible for the transcription factor complexes’ formation
and functional regulation.

2.4 Identifying protein kinases upstream of
transcriptional complexes

Once we build a subnetwork/protein complex that connects the identified
transcription factors to each other, we convert this subnetwork to a list of
proteins and feed it as input to the Kinase Enrichment Analysis (KEA)
(Lachmann and Ma’ayan, 2009) module of X2K. KEA is web-based and
command-line software with an underlying database that provides users
with the ability to link lists of mammalian proteins with the protein kinases
that likely phosphorylate them. The system draws from several available
kinase–substrate databases to compute kinase enrichment probability based
on the distribution of kinase–substrate proportions in the background
kinase–substrate database compared with the protein kinases found to be
associated with an input list of proteins using the Fisher’s exact test. Using
information available in the public domain, we reconstructed a mammalian
kinase–substrate network. The kinase–substrate interactions are from the
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human protein reference database (HPRD) (Keshava Prasad et al., 2009),
PhosphoSite (Hornbeck et al., 2004), phospho.ELM (Diella et al., 2004),
NetworKIN (Linding et al., 2008) and Kinexus (www.kinexus.ca). In total,
the consolidated dataset contains 14 374 interactions from 3469 publications
involving 436 kinases.

2.5 The X2K software
All together, starting from a set of differentially expressed genes, we end
up with protein kinases, transcription factors and protein complexes that
are putative regulators of the inputted differentially expressed genes. The
X2K system was developed as an open source Java desktop application
and is available at http://www.maayanlab.net/X2K with documentation. The
underlying code for X2K was developed using the Java 6 SDK under the
Eclipse IDE. Using an Apache Maven build process, command-line and
Swing GUI versions are packed into an executable JAR with all the necessary
background files included. User can unpack the JAR to access the background
databases used. Since the code does not use any operating-system-specific
methods, the application is inherently multiplatform. After entering a list of
differentially expressed genes, the program outputs Excel spreadsheets, text
files and network files in different formats, including networks that can be
visualized with Cytoscape (Shannon et al., 2003), SNAVI (Ma’ayan et al.,
2009), Pajek, or yEd. User manual is available as supporting materials.

3 RESULTS

3.1 Application of X2K to recover drug-targeted
pathways from gene expression signatures

To demonstrate how X2K can be used to infer upstream regulators
given gene expression changes, we first applied the tool to analyze
expression data from the Connectivity Map (CMAP) (Lamb et al.,
2006). The CMAP database developed by the Broad Institute is a
large dataset of mRNA microarray gene expression profiles made
from experiments where four different types of human cancer cell
lines were treated with many single FDA-approved drugs and
then gene expression was measured after 6 hours. CMAP contains
6100 perturbations with 1309 single drugs, where compounds were
applied in different concentrations, to different cell types, or other
variable experimental conditions. Using CMAP, we examine if the
known drug target proteins fall within the subnetworks created
by the intermediate steps of X2K. We omitted G-protein coupled
receptors (GPCR) targeting drugs because X2K is not designed to
recover those. First, we extracted the top 500 upregulated and bottom
500 downregulated genes from CMAP for each drug perturbation
experiment based on the ranked gene lists provided for download
from the CMAP website. We then entered these lists as input into the
X2K pipeline. Once we collected all the transcription factors, protein
complexes and protein kinases based on gene expression changes
induced by the different drug perturbations, using the default settings
of X2K, we asked whether the genes/proteins appearing in these
pathways are enriched in known drug targets reported in DrugBank
(Wishart et al., 2008) (Fig. 2).

We show that ∼15–17% of the time we can recover the drug target
in pathways created by X2K using ChEA or TRANSFAC/JASPAR.
The TRANSFAC/JASPAR option is slightly better in recovering
targets as compared with ChEA. Interestingly, targets can be
recovered directly within the differentially expressed genes better
than by chance but with much less recall and specificity as compared
with X2K. Having targets appearing in differentially expressed
genes more than by chance was previously reported by Iskar
et al. (2010), which is consistent with our findings. In addition,

Fig. 2. Validation of X2K with CMAP and DrugBank. X2K recovered ∼15–
17% of the times at least one known non-GPCR primary drug target in
pathways created upstream from gene expression profiles from CMAP using
the 500 up and down lists from individual experiments in CMAP (first two
sets of bar graphs from right). The X2K software was used with the default
settings: 10 top transcription factors based on ChEAor TRANSFAC/JASPAR
(ChEA is used as default, otherwise TRANSFAC is labeled), G2N to expand
the initial list with all protein–protein interactions datasets, and 10 top kinases
from KEA. These results were compared with the percent of recovered drug
targets in randomly generated gene lists, randomly generated lists piped into
X2K, shuffled lists from CMAP, targets recovered directly from the top 500
up and down lists from CMAP or targets found in protein–protein interaction
networks created from the top 500 up and down lists from CMAP (left to
right bar graphs).

targets can be found in pathways constructed directly from the
differentially expressed genes, but this procedure too has less recall
and specificity as compared with X2K. Other statistical controls
show that targets can be found in randomly generated gene lists of
500 human genes ∼2–3% of the time, and in pathways created from
randomly generated lists of genes ∼7% of the time. Hence, X2K is
capable of recovering drug targets from gene expression better than
other methods. More parameter tuning, as well as expansion and
improvement of the databases quality and coverage used by X2K
are expected to improve performance. This is reserved to future
studies.

3.2 Application of X2K to obtain a global view of
cellular differentiation

The X2K method can be applied globally to map the putative
upstream ‘regulatory state’ of mammalian cells by comparing
and contrasting the subnetworks generated by the program across
different cell types and cell states. Our hypothesis is that given a
set of samples from genome-wide expression data across many cell
types and experimental conditions, we can correctly infer the activity
patterns of the upstream transcription factors and protein kinases
across samples to obtain a global picture of cell regulation across
multiple regulatory layers (Supplementary Fig. S1). Such activity
patterns can be approximated by enrichment analyses applied to the
weighted expression of differentially expressed gene modules. This
approach can also be used to validate whether X2K is identifying
a set of transcription factors and protein kinases that are unique
to specific cell types and experimental conditions. Developing an
initial approach to achieve this goal, we first analyzed 44 samples
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from genome-wide expression data collected from embryonic stem
cells induced to differentiate toward different lineages as well
as several other terminal cell types all collected and previously
analyzed by other studies (Aiba et al., 2009). The gene expression
data matrix was subjected to an iterative consensus agglomerative
clustering algorithm with within-module-coherence threshold of 0.7
and merging threshold set to 0.8 (Qiu et al., 2011). As a result,
300 expression modules were identified, but only 49 modules had
a hundred or more genes, and these modules were retained for
further analysis. Upstream transcription factors enriched for each
module were computed using ChEA. An enrichment significance
matrix M was then generated with entries mjk representing the -
log(p-value) of the enriched transcription factor j for module k. A
pseudo activity matrix P was then generated with pij representing
pseudo activity for transcription factor j in sample i calculated as
follows: pij =max(mjk) × akj × eij × iij where akj is the mean
expression of module k in sample i, eij is the expression level of the
transcription factor and iijis a Boolean indicator function that checks
if the transcription factor is expressed above average in the sample.
Hence, the pseudo activity pij is composed of the binding score
for the transcription factor, the average mRNA expression of the
regulated module and the expression level of the transcription factor
in the sample (Supplementary Fig. S1). To visualize the preservation
of ordering of the samples across regulatory layers for the 44
cell types and conditions, we implemented four data visualization
methods: (i) Principle Component Analysis (PCA) (Supplementary
Fig. S2); (ii) Minimum Spanning Trees (MST), implemented with a
modified script based on the recently published sample progression
discovery (SPD) package (Qiu et al., 2011) (Supplementary Fig. S3);
(iii) hierarchical clustering (Supplementary Figs S4 and S5);
and (iv) our Grid Analysis of Time-series Expression (GATE)
software (MacArthur et al., 2010), repurposed to have each hexagon
representing a cell type (Fig. 3).

The GATE software takes as input a data table, where rows
are variables and columns are measurements. The software uses
simulated annealing to arrange variables on a hexagonal grid based
on correlations between variables across all measurements. In our
case, the variables are cell types or tumor samples, and the columns,
representing measurements, are inferred pseudo-activity levels of
transcription factors and protein kinases. Similar to the way we
compute pseudo-activity for transcription factors, we can identify
the upstream protein kinases enriched for each module using the
command-line version of X2K and the same steps performed for
the transcription factors. Consequently, by using the upstream
regulatory transcription factors and protein kinases activity patterns,
the landscape of samples can be correctly time-ordered and samples
of the same subtype are closer to each other than to other subtypes.
To test whether the preserved ordering of samples across regulatory
layers arises by chance, we applied the same procedure to shuffled
data (Supplementary Fig. S6). We quantified the preservation of the
ordering by an objective error function, counting the times neighbors
of each node are preserved, and clearly saw that the ordering
is far from random (P-value <10−10, two-tailed t-test for both
transcription factors and protein kinases). Enriched transcription
factors with relatively high predicted activity in the pluripotent
stem cells are generally known factors such as Oct4/Pou5f1, Nanog
and Sox2. In comparison, enriched lineage commitment regulators
are predicted to be active in more differentiated cell types. For
example, Gata4 is a known master regulator for the endoderm

Fig. 3. GATE visualization of transcription factor and protein kinase pseudo-
activity scores applied to 44 cell types. Each hexagon represents a different
cell type, color-coded based on the different lineage groups, but ordered
based on pseudo-activity scores correlation with other cell types. Next to
each hexagonal heatmap there are representative (left) transcription factors
and (right) protein kinases, pseudo-activity score profiles for all transcription
factors and kinases for selected samples. Red represents up-regulation and
green represents down-regulation of the transcription factors or kinases
regulating co-expressed modules across the 44 samples for a specific sample.
Specific transcription factors and protein kinases are highlighted with straight
vertical lines and are annotated at the bottom. Transcription factors and
kinases are ordered along the line corresponding to the order determined
by hierarchical clustering. The hexagonal grid folds on itself to form a torus
such that hexagons at the edges are close to hexagons from the opposite side.

lineage and correspondingly displays high pseudo activity scores in
late-stage endoderm cells. These results can be used to characterize
the upstream regulatory profile of the 44 different cell types. This
approach can be used to tune the parameters and datasets used by
X2K to validate the approach by setting the thresholds that best
preserve the ordering of samples and recovering the already known
transcription factors and protein kinases for cell types.

3.3 Application of X2K to unravel regulatory
mechanisms of subtypes of breast cancer

The inherent inter-patient heterogeneity of breast cancer motivates
the identification of unique molecular signatures of the disease
at the individual patient level. The ability to identify molecular
regulatory differences at the genome, transcriptome, gene-regulome
and kinome levels for particular cancer subtypes may enable us to
better tailor and optimize therapeutics for individual patients. To
achieve this, we illustrate the utility of X2K to uncover putative
upstream regulatory mechanisms from previously published gene
expression data collected from a large cohort of breast cancer
tumors. We show that subtype similarities in gene expression can
be grouped and visualized based on the pseudo-activity scores
of upstream transcription factors and protein kinases that likely
regulate differentially expressed genes in the breast cancer subtypes.
Specifically, X2K was applied to analyze a publicly available breast
cancer gene expression dataset from fresh frozen tissues of 327
patients that were randomly selected from a group of diagnosed
individuals between 1991 and 2004 at the Koo Foundation Sun-Yat-
Sen Cancer Center (Kao et al., 2011). In the original study, the cancer
tissues were categorized into six subtypes based on differential gene
expression signatures. Based on OncotypeDX (Paik et al., 2004)
and MammaPrint (van ‘t Veer et al., 2002) signatures, the risk for
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Fig. 4. GATE visualization of transcription factor and protein kinase
pseudo-activity scores applied to 327 breast cancer tumor samples. Each
hexagon represents a different profiled tumor from an individual patient.
Each hexagon is color-coded based on previous classification of tumor
invasiveness and recurrence. Next to each hexagonal heatmap there are
representative (left) transcription factor and (right) protein kinase, pseudo
activity score profiles for all transcription factors and kinases for selected
samples. Red represents up-regulation and green represents down-regulation
for a specific sample. Specific transcription factors and protein kinases
are highlighted with straight vertical lines and are annotated at the
bottom. Transcription factors and kinases are ordered along the line profile
that corresponds to ordering determined by hierarchical clustering. The
hexagonal grid folds on itself to form a torus such that hexagons at the
edges are close to hexagons from the opposite side.

distant cancer recurrence and metastasis was assessed such that
subtypes 1 and 2 had high risk, subtypes 3 and 4 had intermediate risk
and subtypes 5 and 6 had low risk. The normalized gene expression
data and corresponding patient subtype designations were obtained
from Gene Expression Omnibus (accession GSE20685), subjected
to probe-set consolidation, hierarchical clustering, and gene co-
expression module identification. X2K was applied to co-expressed
modules, where each module consisted of a list of genes whose
expression profiles correlated across all patients. The detailed
procedure and parameters are similar to those applied above for
analyzing the 44 stem cells and their differentiated progeny. The
correlation of pseudo activity contribution scores of the transcription
factors and protein kinases that were enriched in the maximum-
score gene modules were used to cluster and visualize the 327
patients using GATE (MacArthur et al., 2010) (Fig. 4). As shown
by the list of identified key transcription factors in the subtypes’
representative profiles, our analysis confirmed the downregulation
of the nuclear receptors ESR1, ESR2 and AR in the high risk tumors.
This is consistent with the original expression-based analysis that
reported that subtypes 1 and 2 (high risk group) were estrogen
receptor (ESR) negative. On the other hand, the high risk subtypes
display upregulation of target genes regulated by members of the
Polycomb group (EZH2, RNF2, PHC1, SUZ12), which are known
to be downregulated in many cancers (Raaphorst, 2005). Together
with identified enrichment for NANOG and SOX2, the high risk
tumors suggest a stem cell-like regulatory signature. Moreover, the
tumor suppressor TP53, as well as the receptor-mediated SMADs
(SMAD1, SMAD2, SMAD3) and their associated common mediator
(SMAD4), are predicted to be upregulated in the high-risk subtypes.
Indeed, the TGF-β pathway is commonly implicated in distant

metastasis of breast cancer (Kang et al., 2005), and reduction of
SMAD2/3 signaling in breast cancer has been shown to suppress
distant metastasis (Tian et al., 2003). Furthermore, we assessed the
differential pseudo activity of the putative protein kinases predicted
by X2K for the different breast cancer subtypes. We predict that
MAPK14, RPS6KA2, GSK3B and MAPK3 are downregulated in
the high- and intermediate metastasis-risk subtypes relative to the
low-risk subtypes, while other isoforms of the same kinases, namely
MAPK8, RPS6KA5, GSK3A and MAP11, exhibit the opposite
pattern. Furthermore, we predict that the protein kinase HIPK1
and the TGF-β receptor TGFBR2 are more active in the high-
risk group relative to the low-risk group. These predictions mostly
agree with already known pathways, for example, HIPKs were
reported to phosphorylate p53 (Arai et al., 2007), while the SMAD
family members and TGF-β signaling are connected to TGFBR2.
However, many novel candidates were also identified. Subsequent
experimental verification of these is necessary but is beyond our
expertise.

3.4 Application of X2K for reanalyzing expression data
collected from hippocampal neurons and activated
hepatic stellate cells in liver fibrosis

Lastly, in two additional case studies, we applied the X2K approach
to analyze data from prior studies that applied microarray genome-
wide gene expression analyses to investigate two commonly studied
mammalian systems: (i) investigating differences in genome-wide
expression profiles collected from hepatic stellate cells (HSCs) in
liver fibrosis; and (ii) detecting upstream regulatory pathways by
reanalyzing microarray data collected from hippocampal neurons
treated with bicuculline during development. For the HSCs case
study, we reanalyzed gene expression profiles to investigate
regulatory mechanisms of hepatic fibrosis. Hepatic fibrosis is a
scarring response to liver damage often due to chronic liver disease.
In fibrogenesis, HSCs become activated and differentiate into extra-
cellular-matrix-producing myofibroblasts. To better understand the
gene expression changes that occur during such a process, De
Minicis et al. (2007) conducted a microarray study to examine
differences in gene expression profiles between cultured and in
vivo-activated HSCs. Using the study as a source of microarray
data for X2K, we identified the putative upstream transcription
factors, intermediate proteins and protein kinases that may regulate
the fibrosis response of HSCs. The transcription factor Tcf3 was
predicted as a top candidate and this is supported by studies
investigating the anti-adipogenic role of Wnt signaling in the
pro-fibrogenic response, as a loss of adipogenic transcriptional
regulation has been shown to be important for HSC activation
(She et al., 2005). Among the predicted kinases are members of
the ribosomal s6 kinase (RSK) family of serine/threonine kinases
that can phosphorylate C/EBPbeta, an adipogenic transcription
factor known to regulate collagen type I expression. RSK-mediated
phosphorylation of C/EBPbeta at Thr217 appears to be crucial
for the progression of fibrosis; Rsk inhibition led to regression of
fibrosis in CCl4-treated mice, and increased activation of RSK and
phosphorylated C/EBPbeta both were found in activated HSCs of
liver fibrosis patients (Buck and Chojkier, 2007). Hence, it appears
that X2K was able to correctly identify known upstream regulators
based on the differentially expressed gene alone.
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For the next case study, we reanalyze data relevant to long-term
potentiation (LTP). Zhang et al. (2007) examined gene expression
changes in neonatal mouse hippocampal neurons undergoing
induction of rhythmic network activity. Reanalysis of this data
using X2K has recaptured the transcription factor CREB and the
protein CaMK4 as important upstream regulators. Activation of
CREB is heavily implicated in the literature (Hardingham et al.,
1999). In addition, the calmodulin-dependent kinase (CamK4)
was also recovered from the X2K analysis. The link between
CamK4 and CREB dependent transcription is well established
(Matthews et al., 1994; Sun et al., 1994). Following this link to
N-Methyl-D-aspartic acid (NMDA) receptor activation is clearly
through calcium signaling. It was shown that CamK4 activation is
important for different forms of LTP that depend on NMDA receptor
activation (Kang et al., 2001). Activity-dependent increases in
intracellular calcium, likely through voltage-gated calcium channels,
affect increases in nuclear calcium where CamK4 is preferentially
localized. Hence, the X2K pipeline is capable of recovering known
pathways and likely predicting pathways not known to be involved
before. More details about the two case studies from this section are
available as Supplementary Material and as part of the X2K online
documentation.

4 DISCUSSION
The X2K pipeline presents a new rational approach to identify
and rank upstream regulators that are responsible for observed
changes in gene expression collected at the genome-wide scale from
mammalian cells. The approach, applied to datasets such as CMAP,
has the potential to rapidly advance drug target discovery and help in
unraveling drug mechanisms of action. The application to mapping
transcription factor profiles and kinome profiles of many individual
cell types, i.e. different cells during lineage commitment or tumors
from patients, can be useful to obtain a global view of the axis of cell
signaling networks across many cell types or to compare individual
patients for suggesting appropriate pharmacological interventions.
In addition, specific applications to common studies that examine
genome-wide gene expression under two conditions, such as the
two case studies we presented for HSCs and hippocampal neurons,
can benefit from X2K analysis for generating hypotheses for further
functional experiments following the global expression profiling.

While currently the X2K method uses only protein/DNA
interactions, protein–protein interactions and kinase–substrate
reactions, other types of data could be added. For example, histone
modifications, microRNAs and other types of post-translational
modifications could be incorporated into the pipeline. While more
sophisticated enrichment analyses tests could be implemented, i.e.
gene set enrichment analysis (GSEA) (Subramanian et al., 2005),
and better parameter tuning can be achieved by cross-validation, the
initial application of the approach shows great promise. The X2K
approach is useful for data integration across layers and the reuse of
prior knowledge within newly acquired expression datasets linking
expression changes to upstream regulation. Another limitation of the
method is the assumption of independence between regulators and
targets when applying the ChEA or KEA steps. It is known that the
kinome and transcriptional regulome networks are made of tightly
coupled protein kinases regulating other kinases and transcription
factors regulating other transcription factors. Several recent studies
considered such interactions for transcription factors (Asif and

Sanguinetti, 2011; Novershtern et al., 2011). Such interdependencies
could be added to the X2K analysis where these two regulatory
networks could be dynamically modeled. Regardless of these
limitations and future directions, the current application of X2K
presents an advancement toward our ultimate goal of understanding
mammalian cell signaling networks from a global perspective at a
molecular level of resolution.
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